變壓器通常被認(rèn)為是將高速電流輸出DAC的互補(bǔ)輸出轉(zhuǎn)換為單端電壓輸出的最佳選擇,因?yàn)樽儔浩鞑粫?huì)增加噪聲,也不會(huì)消耗功率.盡管變壓器在高頻信號(hào)下表現(xiàn)良好,但它們無法處理許多儀表和醫(yī)療應(yīng)用所需要的低頻信號(hào).這些應(yīng)用要求一個(gè)低功耗、低失真、低噪聲的高速放大器,以將互補(bǔ)電流轉(zhuǎn)換成單端電壓.此處展示的三個(gè)電路接受來自DAC的互補(bǔ)輸出電流,并提供單端輸出電壓.將后兩者的失真與變壓器解決方案進(jìn)行比較.
差分放大器: AD8129和AD8130差分轉(zhuǎn)單端放大器(圖15)用于第一個(gè)電路(圖16).它們在高頻下具有極高的共模抑制性能.AD8129在增益為10或以上時(shí)保持穩(wěn)定,而AD8130則在單位增益下保持穩(wěn)定.它們的用戶可調(diào)增益可以由, RF 和 RG.兩個(gè)電阻的比值來設(shè)置.AD8129和AD8130在引腳1和引腳8上具有很高的輸入阻抗,不受增益設(shè)置的影響.基準(zhǔn)電壓 (VREF, 引腳4)可以用來設(shè)置偏置電壓,該偏置電壓被乘以與差分輸入電壓相同的增益.
圖15. AD8129/AD8130差動(dòng)放大器
圖16. 采用AD8129/AD8130的DAC緩沖器
方程1和方程2所示為放大器的輸出電壓與DAC的互補(bǔ)輸出電流之間的關(guān)系.端接電阻RT,執(zhí)行電流-電壓轉(zhuǎn)換;RF 與RG之比決定了增益. VREF 在方程2中被設(shè)為0.
(1) |
(2) |
在圖16中,該電路采用一個(gè)四通道高速、低功耗、14位DAC,其中,互補(bǔ)電流輸出級(jí)將提高速度,降低低功耗DAC的失真.
圖17展示的是電路的無雜散動(dòng)態(tài)范圍(SFDR),它是頻率的函數(shù),采用DAC和AD8129,其中,RF = 2kΩ, RG = 221Ω, RT = 100Ω, 且VO = 8Vp-p, 兩個(gè)電源電壓對應(yīng)的不同值.此處選擇了AD8129,因?yàn)樗峁┹^大的輸出信號(hào),在G = 10時(shí)保持穩(wěn)定,與AD8130相比,具有較高的增益帶寬積.兩種情況下,SFDR一般都要好于55dB,超過10MHz,在低電源電壓下,約有>3dB的改善.
圖17. DAC和AD8129的失真 VO = 8 V p-p
單位增益下的運(yùn)算放大器: 第二個(gè)電路(圖18)采用了一個(gè)高速放大器與兩個(gè) RT電阻.該放大器只是通過, RT將互補(bǔ)電流I1和 I2, 轉(zhuǎn)換成單端輸出電壓, VO這個(gè)簡單的電路不允許以放大器為增益模塊放大信號(hào).
圖18. 采用運(yùn)算放大器的簡單差分到單端轉(zhuǎn)換器
方程3所示為VO 與DAC輸出電流之間的關(guān)系.失真數(shù)據(jù)通過與RT并聯(lián)的5pF電容進(jìn)行測量
(3) |
為了展示這個(gè)電路的性能,DAC與ADA4857 和 ADA4817 運(yùn)算放大器配對,其中T = 125Ω (and CT = CF = 5 pF與RT 并聯(lián),以實(shí)現(xiàn)穩(wěn)定性和低通濾波).單通道ADA4857-1和雙通道ADA4857-2為單位增益穩(wěn)定型、高速、電壓反饋放大器,具有低失真、低噪聲和高壓擺率等特點(diǎn).作為眾多應(yīng)用(包括超聲、ATE、有源濾波器、ADC驅(qū)動(dòng)器等)的理想解決方案,其帶寬為850 MHz,壓擺率為2800 V/μs,0.1%建立時(shí)間為10ns——全部都是在5mA的靜態(tài)工作電流下實(shí)現(xiàn).ADA4857-1和ADA4857-2具有寬工作電壓范圍(5V至10V),特別適合需要寬動(dòng)態(tài)范圍、精密、高速度和低功耗的系統(tǒng)
ADA4817-1(單通道)和ADA4817-2(雙通道)FastFET?放大器是具有FET輸入的單位增益穩(wěn)定、超高速電壓反饋型運(yùn)算放大器.它們采用ADI公司的專有超快速互補(bǔ)雙極性(XFCB)工藝制造,具有超低的噪聲(4nV/√Hz和2.5fA/√Hz)和極高的輸入阻抗.其輸入電容為1.3pF,最大失調(diào)電壓為2mV,功耗低(19mA),−3dB帶寬較寬(1050MHz),非常適合數(shù)據(jù)采集前端、光電二極管前置放大器以及其他寬帶跨阻應(yīng)用.它們具有5V至10V的寬電源電壓范圍,可采用單電源或雙電源供電,適合包括有源濾波、ADC驅(qū)動(dòng)和DAC緩沖在內(nèi)的各種應(yīng)用.
圖19比較了該電路在VO = 500mV p-p 時(shí)相對于一個(gè)采用變壓器的電路的失真和頻率之間的關(guān)系.變壓器的失真低于放大器,后者的增益在高頻下不斷下降,但采用變壓器的失真卻在低頻下不斷變差.在此,可在有限范圍內(nèi)實(shí)現(xiàn)接近90dB的SFDR,在高達(dá)10MHz時(shí)優(yōu)于70dB.
圖19. DAC、ADA4857和ADA4817的失真 VO = 500 mV p-p, RL = 1 kΩ
具有增益運(yùn)算放大器: 第三個(gè)電路(圖20)也使用了相同的高速運(yùn)算放大器,但所含電阻網(wǎng)絡(luò)拉遠(yuǎn)了放大器與DAC之間的距離,支持增益設(shè)置,并可以利用VREF1和 VREF2兩個(gè)基準(zhǔn)電壓之一調(diào)整輸出偏置電壓.
圖20. 支持增益和偏置功能的差分到單端轉(zhuǎn)換
方程4定義了DAC輸出電流與放大器輸出電壓在 VREF1 = VREF1 = 0. 時(shí)的關(guān)系.為了匹配DAC之外的放大器網(wǎng)絡(luò)的輸入阻抗RT1 和 RT2, 兩個(gè)端接電阻必須單獨(dú)設(shè)置,同時(shí)要考慮放大器的特性.
(4) |
圖21比較了放大器在這種配置下的失真以及變壓器電路的失真. RT1 = 143Ω, RT2 = 200 Ω,RF = RG = 499Ω, CF = 5pF出于穩(wěn)定性和高頻濾波考慮——且 RL = 1kΩ. 在此ADA4817的性能可與變壓器在高頻下的性能相媲美,在最高70MHz時(shí),其SFDR可維持在優(yōu)于-70dBc的水平.與變壓器相比,兩個(gè)運(yùn)算放大器都能維持出色的低頻保真.
圖21. DAC、ADA4817和ADA4857的失真 VO = 500 mV p-p
本文討論了將低失真、低噪聲、高速放大器用作DAC緩沖器的一些優(yōu)勢,并將其性能與變壓器進(jìn)行了比較.同時(shí)比較了采用兩種不同架構(gòu)的三類應(yīng)用電路,并以實(shí)例展示了DAC和AD8129、ADA4857-1/ADA4857-2以及ADA4817-1/ADA4817-2放大器的測量數(shù)據(jù).數(shù)據(jù)顯示,放大器在頻率低于1MHz時(shí)的性能優(yōu)于變壓器,在頻率不超過80 MHz時(shí),非常接近變壓器.在權(quán)衡考慮功耗和失真時(shí),放大器的選擇非常重要.