《電子技術應用》
您所在的位置:首頁 > 可編程邏輯 > 業(yè)界動態(tài) > 完整解析AI人工智能:3大浪潮+3大技術+3大應用

完整解析AI人工智能:3大浪潮+3大技術+3大應用

2018-05-26

  所謂人工智能(Artificial Intelligence;縮寫:AI),是指以人工方式來實現(xiàn)人類所具有之智慧的技術。只不過,目前能實現(xiàn)與人類智能同等的技術還不存在,世界上絕大多數(shù)的人工智能還是只能解決某個特定問題。本篇文章是在我閱讀了幾本AI的相關書籍后,所概略統(tǒng)整出的架構(gòu),希望讓初次接觸AI的讀者,能透過333口訣,快速理解AI到底是什么。

2-1P416101243R8.png

  一、AI的三次浪潮

  人工智能AI發(fā)展史

  第一次AI浪潮

  第一次AI浪潮起于1950~1960年,止于1980年代。由于出現(xiàn)在網(wǎng)絡之前,因此又被稱為“古典人工智能”。這時期出現(xiàn)的“符號主義”與“聯(lián)結(jié)主義”,分別是日后“專家系統(tǒng)”與“深度學習”的雛形。只不過,雖然當時的成果已能解開拼圖或簡單的游戲,卻幾乎無法解決實用的問題。

  第二次AI浪潮

  第二次AI熱潮伴隨著計算機的普及,出現(xiàn)在1980年代。這時期所進行的研究,是以灌輸「專家知識」作為規(guī)則,來協(xié)助解決特定問題的“專家系統(tǒng)”(Expert system)為主。然而,縱使當時有商業(yè)應用的實例,應用范疇卻很有限,熱潮也因此逐漸消退。

  第三次AI浪潮

  第三次AI浪潮則出現(xiàn)于2010年代,伴隨著高性能計算機、因特網(wǎng)、大數(shù)據(jù)、傳感器的普及,以及計算成本的下降,“機器學習”隨之興起。所謂機器學習(Machine leaning),是指讓計算機大量學習數(shù)據(jù),使它可以像人類一樣辨識聲音及影像,或是針對問題做出合適的判斷。

  二、AI的三大技術

  快速了解了AI的發(fā)展史后,我們來看看當代人工智能的三大代表性模型:遺傳算法、專家系統(tǒng)、類神經(jīng)網(wǎng)絡。

  1、遺傳算法

  遺傳算法(Genetic algorithm;GA),又稱為演化式算法(Evolutionary algorithm),是受達爾文演化論所啟發(fā)的人工智能。它透過「適者生存」的規(guī)則,將“優(yōu)秀的個體”想象成“好的答案”,透過演化的方式來找出最佳解。

  2、專家系統(tǒng)

  專家系統(tǒng)(Expert system),則是針對預設的問題,事先準備好大量的對應方式。它應用在很多地方,尤其是疾病診斷。只不過,專家系統(tǒng)只能針對專家預先考慮過的狀況來準備對策,它并沒有自行學習的能力,因此還是有其局限性。

  3、類神經(jīng)網(wǎng)絡

  從第三次AI浪潮所興起的機器學習(Machine learning)有許多種手法,其中最受矚目的,莫過于深度學習(Deep learning)了。所謂深度學習,是透過模仿人腦的“類神經(jīng)網(wǎng)絡”(Neural network)來學習大量數(shù)據(jù)的手法。

2-1P416101352P2.png

  類神經(jīng)網(wǎng)絡的由來

  若你去觀察腦的內(nèi)部,會發(fā)現(xiàn)有大量稱為“神經(jīng)元”的神經(jīng)細胞彼此相連。一個神經(jīng)元從其他神經(jīng)元那里接收的電氣信號量達某一定值以上,就會興奮(神經(jīng)沖動);在某一定值以下,就不會興奮。

  興奮起來的神經(jīng)元,會將電器信號傳送給下一個相連的神經(jīng)元。下一個神經(jīng)元同樣會因此興奮或不興奮。簡單來說,彼此相連的神經(jīng)元,會形成聯(lián)合傳遞行為。我們透過將這種相連的結(jié)構(gòu)來數(shù)學模型化,便形成了類神經(jīng)網(wǎng)絡。

2-1P416101555J1.png

  類神經(jīng)網(wǎng)絡:深度學習

  我們可以發(fā)現(xiàn),經(jīng)模型化的的類神經(jīng)網(wǎng)絡,是由“輸入層”(Input layer)、“隱藏層”(Hidden layer)及“輸出層”(Output layer)等三層所構(gòu)成。另外,學習數(shù)據(jù)則是由輸入數(shù)據(jù)以及相對應的正確解答來組成。

  以影像辨識為例,為了讓AI學習類神經(jīng)網(wǎng)絡的模型,首先必須先將影像學習數(shù)據(jù)分割成像素數(shù)據(jù),然后將各像素值輸進輸入層。

  接受了數(shù)據(jù)的輸入層,將像素值乘上“權(quán)重”后,便傳送給后方隱藏層的神經(jīng)元。隱藏層的各個神經(jīng)元會累加前一層所接收到的值,并將其結(jié)果再乘上“權(quán)重”后,傳送給后方的神經(jīng)元。最后,經(jīng)由輸出層的神經(jīng)元的輸出,便可得到影像辨識的預測結(jié)果。

  為了讓輸出層的值跟各個輸入數(shù)據(jù)所對應的正解數(shù)據(jù)相等,會對各個神經(jīng)元的輸入計算出適當?shù)摹皺?quán)重”值。

  這個權(quán)重的計算,一般是使用“誤差倒傳遞算法”(Error Back Propagation),使用與正解數(shù)據(jù)之間的誤差,從輸出層逆推回去。透過各「權(quán)重」的調(diào)整,來縮小輸出層的值與正解數(shù)據(jù)的值之間的誤差,以建立出完成學習的模型。

  由于過去類神經(jīng)網(wǎng)絡之間進行傳遞的權(quán)重值難以優(yōu)化,因此曾有多數(shù)研究者對類神經(jīng)網(wǎng)絡的研究持否定態(tài)度。直到2006年,辛頓(Geoffrey Hinton)開發(fā)出自動編碼器(Autoencoder)的手法,才突破了這項瓶頸。

  自動編碼器是指,在類神經(jīng)網(wǎng)絡的輸入層和輸出層使用相同數(shù)據(jù),并將隱藏層設置于二者之間,藉此用來調(diào)整類神經(jīng)網(wǎng)絡之間的權(quán)重參數(shù)的一種手法。利用以自動編碼器所獲得的類神經(jīng)網(wǎng)絡權(quán)重參數(shù)值進行初始化后,便能應用「誤差倒傳遞算法」,提高多層類神經(jīng)網(wǎng)絡的學習準確度。

  透過類神經(jīng)網(wǎng)絡,深度學習便成為了“只要將數(shù)據(jù)輸入類神經(jīng)網(wǎng)絡,它就能自行抽出特征”的人工智能,而這又稱為“特征學習”(feature learning)。

  深度學習最擅長的,是它能辨識圖像數(shù)據(jù)或波形數(shù)據(jù)這類無法符號化的數(shù)據(jù)。自2010年代以來,如Google、Microsoft及Facebook等美國知名IT企業(yè),都開始著手深度學習的研究。例如,蘋果「Siri」的語音識別,Microsoft搜索引擎「Bing」所具備的影像搜尋等等,而Google的深度學習項目也已超過1,500項。

  至于深度學習如此飛躍的成長,要歸功于硬設備的提升。圖形處理器(GPU)大廠輝達(NVIDIA)利用該公司的圖形適配器來提升深度學習的性能,提供鏈接庫(Library)和框架(framework)產(chǎn)品,并積極開設研討課程。另外,Google也公開了框架「TensorFlow」,可以將深度學習應用于數(shù)據(jù)分析。

  三、AI的三大應用

  據(jù)羿戓制造了解到,AI應用領域主要可分為語音識別、影像辨識以及自然語言處理等三部分。

  1、語音識別

  語音識別部分,透過多年來語音識別競賽CHiME的研究,已經(jīng)有了等同人類的辨識度(CHiME,是針對實際生活環(huán)境下的語音識別,所進行評測的國際語音識別競賽)。此外,Apple、Google、Amazon也相繼提出可應用于日常生活的服務,因此其成熟度已達到實用等級。

  2、影像辨識

  影像辨識部分,雖然一般圖片的辨識已有同等于人類的辨識率,但動態(tài)影像的辨識準確度卻仍比不上人類,目前還在進行各種算法的測試。其中,影像辨識目前最火熱的應用場域非自動駕駛莫屬了。

  整個汽車、信息通訊產(chǎn)業(yè)都正朝著自駕車的方向努力,例如Google持續(xù)進行自動駕駛的研究,TOYOTA也在美國設立豐田研究所,可以知道現(xiàn)階段的開發(fā)已十分接近實用化。因此,我們可判斷目前影像辨識的成熟度是介在研究和實用等級之間。

  3、自然語言處理

  自然語言處理(Natural language processing;NLP),是試著讓人工智能能理解人類所寫的文字和所說的話語。NLP首先會分解詞性,稱之“語素分析”(morphemic analysis),在分解出最小的字義單位后,接著會進行“語法分析”(syntactic analysis),最后再透過“語意分析”(semantic analysis)來了解含意。

  輸出部分,自然語言處理也與生成文法(generative grammar)密切相關。生成文法理論認為,只要遵循規(guī)則即可生成文句。這也代表著,只要把規(guī)則組合在一起,便可能生成文章。

  在自然語言處理中,最具代表性的應用就是“聊天機器人”(Chatbot)了,它是一種如真人般,可透過文字訊息與人對話的程序。2016年,臉書推出了“Facebook Messenger Platform”,而Line也推出了“Messaging API”,因而促使這種搭載NLP技術的聊天機器人成為矚目的焦點。

  另外,由IBM所開發(fā)的華生(IBM Watson),也是應用NLP的人工智能而成。華生可以從維基百科等語料庫中抽取知識,學習詞匯與詞匯之間的相關性?,F(xiàn)在,就連軟件銀行(SoftBank)機器人Pepper也是搭載華生系統(tǒng)。

  只不過,由于在日常對話中,我們很常省略詞句,也不一定會提及時空背景,因此當前的Chatbot尚無法與人類進行天花亂墜的對話。所以說,現(xiàn)行多數(shù)的Chatbot廠商,還是會限定對話的環(huán)境與應用領域。

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經(jīng)濟損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。