《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于投影法和卷積神經(jīng)網(wǎng)絡(luò)的手寫漢字圖像分割研究
基于投影法和卷積神經(jīng)網(wǎng)絡(luò)的手寫漢字圖像分割研究
2021年電子技術(shù)應(yīng)用第11期
張 莉1,孟范澤1,劉思霖1,馮 銳1,王 鋼2,蔡 靖1
1.吉林大學(xué) 儀器科學(xué)與電氣工程學(xué)院,吉林 長(zhǎng)春130026;2.北華大學(xué),吉林 吉林132013
摘要: 為提高手寫漢字的識(shí)別率,針對(duì)手寫漢字的有效分割,建立了卷積神經(jīng)網(wǎng)絡(luò)手寫漢字體識(shí)別模型,并對(duì)投影法和輪廓檢測(cè)法的適用性進(jìn)行了對(duì)比分析。實(shí)驗(yàn)結(jié)果顯示,相較于輪廓檢測(cè)法,投影法更適用于手寫漢字識(shí)別中對(duì)文字圖像的處理工作,可以實(shí)現(xiàn)對(duì)所需文字的有效切分,同時(shí)簡(jiǎn)化手寫漢字識(shí)別網(wǎng)絡(luò)的設(shè)置并提高識(shí)別準(zhǔn)確率。
中圖分類號(hào): TN919.82
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.201085
中文引用格式: 張莉,孟范澤,劉思霖,等. 基于投影法和卷積神經(jīng)網(wǎng)絡(luò)的手寫漢字圖像分割研究[J].電子技術(shù)應(yīng)用,2021,47(11):73-75,80.
英文引用格式: Zhang Li,Meng Fanze,Liu Silin,et al. Application of projection method in the recognition of handwritten Chinese characters[J]. Application of Electronic Technique,2021,47(11):73-75,80.
Application of projection method in the recognition of handwritten Chinese characters
Zhang Li1,Meng Fanze1,Liu Silin1,F(xiàn)eng Rui1,Wang Gang2,Cai Jing1
1.College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130026,China; 2.Beihua University,Jilin 132013,China
Abstract: In order to improve the recognition rate of handwritten Chinese characters and for the effective segmentation of handwritten Chinese characters, this paper established a handwriting Chinese font recognition model based on convolutional neural network, and compared and analyzed the applicability of projection method and contour detection method. The experimental results show that, compared with the contour detection method, the projection method is more suitable for the processing of characters and images in handwritten Chinese character recognition, which can realize the effective segmentation of required characters, simplify the setting of handwritten Chinese character recognition network and improve the recognition accuracy.
Key words : handwritten Chinese character recognition;the neural network;projection method;contour detection method

0 引言

    隨著科技的發(fā)展以及人們?nèi)粘I罟ぷ髦袑?duì)手寫漢字識(shí)別的需求與日俱增,精確識(shí)別手寫票據(jù)、手寫試卷以及檔案信息表等文件中的手寫漢字,將會(huì)為社會(huì)帶來極大的便利。然而,漢字類別繁多,字形結(jié)構(gòu)復(fù)雜,一直是手寫字體識(shí)別中的難點(diǎn)和熱點(diǎn)[1],且個(gè)人手寫漢字字體特點(diǎn)也不盡相同[2]。從文獻(xiàn)[3]可以看出,隨著所需識(shí)別漢字的數(shù)量以及神經(jīng)網(wǎng)絡(luò)復(fù)雜程度的提升,相應(yīng)的計(jì)算時(shí)間也會(huì)呈指數(shù)形式提升[4-5]。由此可見,實(shí)現(xiàn)對(duì)手寫漢字圖像的有效分割,將會(huì)減少手寫漢字的識(shí)別量,相應(yīng)地也降低了手寫漢字識(shí)別的復(fù)雜度與計(jì)算時(shí)間。

    為了達(dá)到精準(zhǔn)分割、有效識(shí)別的目的,本文建立了卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)手寫漢字識(shí)別模型。對(duì)投影法輪廓檢測(cè)法的適用性進(jìn)行了對(duì)比分析,通過實(shí)驗(yàn)對(duì)投影法在手寫漢字識(shí)別中的適用性進(jìn)行了驗(yàn)證。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://theprogrammingfactory.com/resource/share/2000003830。




作者信息:

張  莉1,孟范澤1,劉思霖1,馮  銳1,王  鋼2,蔡  靖1

(1.吉林大學(xué) 儀器科學(xué)與電氣工程學(xué)院,吉林 長(zhǎng)春130026;2.北華大學(xué),吉林 吉林132013)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。