噪聲中的復(fù)信號盲源分離算法
2022年電子技術(shù)應(yīng)用第4期
馮平興1,張洪波2,李文翔1
1.成都工業(yè)學(xué)院 網(wǎng)絡(luò)與通信工程學(xué)院,四川 成都611731;2.成都信息工程大學(xué) 通信工程學(xué)院,四川 成都610103
摘要: 復(fù)信號分析是信號處理技術(shù)常見的問題之一,在盲信號分離及處理技術(shù)中特別是卷積混合問題或頻域分析等均需要建立與之相應(yīng)的復(fù)值分析模型。然而在以往的分析中,由于此類問題往往是基于無噪聲的約束條件,因此局限了該技術(shù)在實(shí)際中的應(yīng)用。針對這一問題,將復(fù)值盲源分離問題推廣到含噪聲的一般環(huán)境中。通過分析高斯噪聲協(xié)方差的一般特征,利用高斯噪聲協(xié)方差的參數(shù)信息,導(dǎo)出了一種在噪聲環(huán)境下盲源分離的不動(dòng)點(diǎn)算法,該算法可以在噪聲環(huán)境中通過觀測信號估計(jì)與之對應(yīng)的有效分離矩陣,使得復(fù)值信號在噪聲環(huán)境中混合中仍然能成功分離出源信號。仿真結(jié)果表明了所研究方法的可行性與有效性。
中圖分類號: TN95
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.212012
中文引用格式: 馮平興,張洪波,李文翔. 噪聲中的復(fù)信號盲源分離算法[J].電子技術(shù)應(yīng)用,2022,48(4):67-70,75.
英文引用格式: Feng Pingxing,Zhang Hongbo,Li Wenxiang. Blind source separation algorithm for complex signals in noise[J]. Application of Electronic Technique,2022,48(4):67-70,75.
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.212012
中文引用格式: 馮平興,張洪波,李文翔. 噪聲中的復(fù)信號盲源分離算法[J].電子技術(shù)應(yīng)用,2022,48(4):67-70,75.
英文引用格式: Feng Pingxing,Zhang Hongbo,Li Wenxiang. Blind source separation algorithm for complex signals in noise[J]. Application of Electronic Technique,2022,48(4):67-70,75.
Blind source separation algorithm for complex signals in noise
Feng Pingxing1,Zhang Hongbo2,Li Wenxiang1
1.School of Network and Communication Engineering,Chengdu Technological University,Chengdu 611731,China; 2.School of Communication and Information Engineering,Chengdu University of Information Technology,Chengdu 610103,China
Abstract: Complex signal analysis is one of the common problems in signal processing technology. In blind signal separation technology, especially convolution mixing problem or frequency domain analysis, it is necessary to establish the corresponding complex value analysis model. In the previous analysis, such problems are often based on a noise free constraint, which limits the application of this technology in practice. In order to solve this problem, this research extends the complex valued blind source separation to the more general environment that with noise. By analyzing the general characteristics of Gaussian noise and using the parameter information of Gaussian noise covariance, a fixed point algorithm for blind source separation in noisy environment is derived. The algorithm can estimate the corresponding effective separation matrix through observed signals in noisy environment. The simulation results show the feasibility and effectiveness of the proposed method.
Key words : blind source separation;complex signal processing;Gaussian noise;signal recovery
0 引言
盲源分離(Blind Source Separation,BSS)是信號處理技術(shù)的一個(gè)分支,它已經(jīng)引起了許多的研究及應(yīng)用[1-9]。鑒于復(fù)值盲源分離在頻域應(yīng)分析上的特點(diǎn),它在無線通信、雷達(dá)、數(shù)據(jù)分析等領(lǐng)域有著廣泛的應(yīng)用。以往的研究中,Bingham和Hyvarinen[10]提出的復(fù)值快速BSS算法是分離復(fù)值信號的重要方法之一。在文獻(xiàn)[10]中,作者提出了一種無噪聲的定點(diǎn)算法,并推導(dǎo)了假設(shè)源的局部穩(wěn)定條件,而當(dāng)信號存在高斯噪聲時(shí),該算法的性能會(huì)失效。本研究給出了一般的盲源分離問題,將其推廣到噪聲環(huán)境,通過對復(fù)值BSS混合模型,利用偏差去除技術(shù)的方法對噪聲進(jìn)行修正,實(shí)現(xiàn)對噪聲的抑制,在此基礎(chǔ)上結(jié)合復(fù)值BSS分離算法,從而有效分離在噪聲環(huán)境下的復(fù)值信號。
本文詳細(xì)內(nèi)容請下載:http://theprogrammingfactory.com/resource/share/2000004056。
作者信息:
馮平興1,張洪波2,李文翔1
(1.成都工業(yè)學(xué)院 網(wǎng)絡(luò)與通信工程學(xué)院,四川 成都611731;2.成都信息工程大學(xué) 通信工程學(xué)院,四川 成都610103)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。