基于改進(jìn)蟻群算法的機(jī)器人路徑規(guī)劃方法
2023年電子技術(shù)應(yīng)用第1期
王星宇1,胡燕海1,徐堅(jiān)磊2,陳海輝2
1.寧波大學(xué) 機(jī)械工程與力學(xué)學(xué)院,浙江 寧波 315211;2.寧波航工智能裝備有限公司,浙江 寧波 315311
摘要: 根據(jù)傳統(tǒng)蟻群算法在機(jī)器人的路線規(guī)劃中具有收斂速度慢、容易陷入局部最優(yōu)解的缺陷,提供了一個(gè)經(jīng)過改進(jìn)的蟻群算法。使用柵格法建立路徑矩陣,建立一種轉(zhuǎn)角啟發(fā)函數(shù),增加選擇指定路徑的概率,提高算法的搜索速度;將A*算法與改進(jìn)蟻群算法結(jié)合,提出一種改進(jìn)的距離啟發(fā)函數(shù),避免了陷入局部最優(yōu)解;并提出一種可根據(jù)迭代次數(shù)而改變的信息素?fù)]發(fā)因子,增強(qiáng)了全域搜尋能力。根據(jù)相關(guān)數(shù)據(jù)分析,與Ant Colony Algorithm with Multiple Inspired Factor(ACAM)算法相比,改進(jìn)的蟻群算法對(duì)于解決算法收斂速度慢、防止進(jìn)入局部最優(yōu)解等方面效果更好。
中圖分類號(hào):TP301.6
文獻(xiàn)標(biāo)志碼:A
DOI: 10.16157/j.issn.0258-7998.222741
中文引用格式: 王星宇,胡燕海,徐堅(jiān)磊,等. 基于改進(jìn)蟻群算法的機(jī)器人路徑規(guī)劃方法[J]. 電子技術(shù)應(yīng)用,2023,49(1):75-80.
英文引用格式: Wang Xingyu,Hu Yanhai,Xu Jianlei,et al. Robot path planning method based on improved ant colony algorithm[J]. Application of Electronic Technique,2023,49(1):75-80.
文獻(xiàn)標(biāo)志碼:A
DOI: 10.16157/j.issn.0258-7998.222741
中文引用格式: 王星宇,胡燕海,徐堅(jiān)磊,等. 基于改進(jìn)蟻群算法的機(jī)器人路徑規(guī)劃方法[J]. 電子技術(shù)應(yīng)用,2023,49(1):75-80.
英文引用格式: Wang Xingyu,Hu Yanhai,Xu Jianlei,et al. Robot path planning method based on improved ant colony algorithm[J]. Application of Electronic Technique,2023,49(1):75-80.
Robot path planning method based on improved ant colony algorithm
Wang Xingyu1,Hu Yanhai1,Xu Jianlei2,Chen Haihui2
1.School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211,China; 2.Ningbo Hanggong Intelligent Equipment Co., Ltd., Ningbo 315311,China
Abstract: An improved ant colony algorithm is provided according to the disadvantage of slow convergence and easy to fall into local optimal solution of traditional ant colony algorithm in robot route planning. The raster method is used to build the path matrix, and a corner heuristic function is established to increase the probability of selecting a specified path and improve the search speed of the algorithm. Combining A* algorithm with improved ant colony algorithm, an improved distance heuristic is proposed to avoid falling into local optimal solution. A pheromone volatile factor which can be changed according to the number of iterations was proposed to enhance the global search ability. Based on the related data analysis, the improved ant colony algorithm is better than Ant Colony Algorithm with Multiple Inspired Factor(ACAM )algorithm in resolving problems such as slow convergence rate and preventing entering local optimal solution.
Key words : improved ant colony algorithm;robot;Grid method;A* algorithm
0 引言
近年來,由于世界科學(xué)技術(shù)的蓬勃發(fā)展,機(jī)器人也逐漸走入中國大眾的視野。路徑規(guī)劃是機(jī)器人控制中一個(gè)無法避免的問題。迄今為止,在機(jī)器人的路徑規(guī)劃問題上,已經(jīng)有不少前輩做過難以計(jì)量的研究。常規(guī)的路徑算法有Dijstra算法[1]、A*算法[2]、人工勢(shì)場(chǎng)法[3]等。隨著機(jī)器人科技的蓬勃發(fā)展,傳統(tǒng)的算法很難滿足當(dāng)前路徑規(guī)劃的需求,于是智能的仿生算法應(yīng)運(yùn)而生,如遺傳算法[4]、粒子群算法[5]、蝙蝠算法[6]、蟻群算法[7]等。
蟻群算法可以利用全局搜索找到更優(yōu)解,并具有很強(qiáng)的并行性,個(gè)體間也能夠相互傳遞信息,并可以迅速收斂到解空間的某一子集,從而促進(jìn)了對(duì)解空間的深入研究[8]。傳統(tǒng)的蟻群算法由于其本身的原因,存在收斂速度不足、無法合理避開局部最優(yōu)解的問題[9]。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://theprogrammingfactory.com/resource/share/2000005080。
作者信息:
王星宇1,胡燕海1,徐堅(jiān)磊2,陳海輝2
(1.寧波大學(xué) 機(jī)械工程與力學(xué)學(xué)院,浙江 寧波 315211;2.寧波航工智能裝備有限公司,浙江 寧波 315311)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。