《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 基于弧度特征的火箭時(shí)序數(shù)據(jù)相似性評(píng)估
基于弧度特征的火箭時(shí)序數(shù)據(jù)相似性評(píng)估
電子技術(shù)應(yīng)用
曾騰1,2,徐海洲3,李林峰1,周淦1,孟令剛1
1.華北計(jì)算機(jī)系統(tǒng)工程研究所,北京 100083;2.西安電子科技大學(xué) 計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,陜西 西安 710071; 3.西安郵電大學(xué) 計(jì)算機(jī)學(xué)院,陜西 西安 710061
摘要: 評(píng)估火箭時(shí)序數(shù)據(jù)的相似性是火箭時(shí)序數(shù)據(jù)分析的主要任務(wù)之一。動(dòng)態(tài)時(shí)間規(guī)整算法是最具代表性的相似性度量算法,但由于其容易發(fā)生病態(tài)對(duì)齊現(xiàn)象,時(shí)刻點(diǎn)常被算法錯(cuò)誤匹配,導(dǎo)致度量精度難以滿足要求。為解決該問題,提出一種基于弧度特征的時(shí)序數(shù)據(jù)相似性評(píng)估算法。該算法充分考慮了原始時(shí)序特征和弧度特征,并采用時(shí)刻鄰域信息進(jìn)行計(jì)算,極大地提升了算法對(duì)序列局部形狀的捕捉能力。將算法用于時(shí)間序列分類任務(wù),在9個(gè)具有火箭數(shù)據(jù)類似特征的數(shù)據(jù)集上與4種相似度度量進(jìn)行了對(duì)比,獲得了26.04%以上的分類精度提升,證明了算法的有效性。
中圖分類號(hào):TP311 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.234350
中文引用格式: 曾騰,徐海洲,李林峰,等. 基于弧度特征的火箭時(shí)序數(shù)據(jù)相似性評(píng)估[J]. 電子技術(shù)應(yīng)用,2024,50(2):71-75.
英文引用格式: Zeng Teng,Xu Haizhou,Li Linfeng,et al. Similarity evaluation of rocket time series data based on radian features[J]. Application of Electronic Technique,2024,50(2):71-75.
Similarity evaluation of rocket time series data based on radian features
Zeng Teng1,2,Xu Haizhou3,Li Linfeng1,Zhou Gan1,Meng Linggang1
1.National Computer System Engineering Research Institute of China, Beijing 100083, China; 2.School of Computer Science and Technology, Xidian University, Xi’an 710071, China; 3.School of Computer Science & Technology,Xi’an University of Posts&Telecommunications,Xi’an 710061,China
Abstract: Evaluating the similarity of rocket time series data is one of the main tasks in rocket time series data analysis. Dynamic time warping (DTW) is the most representative similarity measurement algorithm, but due to its susceptibility to pathological alignment, time points are often mistakenly matched, making it difficult to meet the accuracy requirements in the rocket field. To address this issue, this paper proposes a similarity evaluation algorithm for time series data based on radian features. By fully considering the original temporal features and radian features, and using time neighborhood information for calculation, the algorithm's ability to capture the local shape of the sequence has been greatly improved. The proposed algorithm was applied to time series classification task and achieved a classification accuracy improvement of over 26.04% on nine datasets with similar features of rocket data,which proved its effectiveness.
Key words : rocket time series data;dynamic time warping(DTW);time series similarity

引言

隨著現(xiàn)代火箭技術(shù)的不斷發(fā)展與航天發(fā)射密度的不斷提高,對(duì)火箭飛行狀態(tài)快速分析評(píng)定,及時(shí)發(fā)現(xiàn)異常,展開故障診斷已成為航天測(cè)試發(fā)射領(lǐng)域的迫切需求。遙測(cè)參數(shù),作為反映火箭系統(tǒng)工作狀態(tài)的重要監(jiān)控指標(biāo),是火箭狀態(tài)快速評(píng)定的重要依據(jù)。然而,現(xiàn)行的遙測(cè)數(shù)據(jù)分析技術(shù)多以包絡(luò)閾值分析技術(shù)結(jié)合專家經(jīng)驗(yàn)進(jìn)行。如周輝峰[1]等人提出基于中值濾波的雙邊多點(diǎn)閾值和符號(hào)判斷相結(jié)合的判讀方法,用于處理遙測(cè)參數(shù)中的臺(tái)階參數(shù)、脈沖參數(shù);李鑫[2]等人提出基于雙因子等價(jià)權(quán)函數(shù)的抗差自適應(yīng)估計(jì)算法,對(duì)歷史數(shù)據(jù)進(jìn)行統(tǒng)計(jì),實(shí)現(xiàn)參數(shù)的估計(jì)和標(biāo)準(zhǔn)差的確定,進(jìn)而展開遙測(cè)緩變參數(shù)自動(dòng)判讀;王義新[3]等人通過建立遙測(cè)大數(shù)據(jù)處理專家系統(tǒng),利用固化的工程經(jīng)驗(yàn)?zāi)M專家思維,對(duì)遙測(cè)數(shù)據(jù)進(jìn)行快速推理診斷。這類方法對(duì)數(shù)據(jù)利用效率較低、特征挖掘不夠深入,時(shí)常發(fā)生漏判和誤判,難以滿足快評(píng)需求。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://theprogrammingfactory.com/resource/share/2000005858


作者信息:

曾騰1,2,徐海洲3,李林峰1,周淦1,孟令剛1

1.華北計(jì)算機(jī)系統(tǒng)工程研究所,北京 100083;2.西安電子科技大學(xué) 計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,陜西 西安 710071; 3.西安郵電大學(xué) 計(jì)算機(jī)學(xué)院,陜西 西安 710061


weidian.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。