《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于云計算的蛋白質(zhì)折疊空間結構預測
基于云計算的蛋白質(zhì)折疊空間結構預測
電子技術應用
徐勝超,楊波,王宏杰,毛明揚,蔣金陵,蔣大銳
廣州華商學院 數(shù)據(jù)科學學院
摘要: 構建基于云計算的蛋白質(zhì)折疊空間結構預測框架,通過數(shù)據(jù)云存儲設備獲取蛋白質(zhì)序列原始數(shù)據(jù),采用HDFS(Hadoop Distributed File System)分布式存儲方式保存于云端。資源和隊列管理器RQM(Resource Queue Management)開啟云端虛擬機后,以之作為掃描節(jié)點(Sensor Node, SN),SN基于二維AB非格點模型建立最小蛋白質(zhì)分子能量優(yōu)化函數(shù),采用局部搜索機制改進的量子遺傳算法對其作優(yōu)化求解。利用云端GPU設備處理模型訓練數(shù)據(jù),即可實現(xiàn)蛋白質(zhì)折疊空間結構的自動化預測。實驗結果表明:蛋白質(zhì)序列能量勢函數(shù)計算結果更小、執(zhí)行效率更高、GDT-TS(Geothermal Development and Testing Tool Suite)評價指標值更大。
中圖分類號:TP393.4 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.244973
中文引用格式: 徐勝超,楊波,王宏杰,等. 基于云計算的蛋白質(zhì)折疊空間結構預測[J]. 電子技術應用,2024,50(8):10-16.
英文引用格式: Xu Shengchao,Yang Bo,Wang Hongjie,et al. Cloud computing based spatial structure prediction of protein folding[J]. Application of Electronic Technique,2024,50(8):10-16.
Cloud computing based spatial structure prediction of protein folding
Xu Shengchao,Yang Bo,Wang Hongjie,Mao Mingyang,Jiang Jinling,Jiang Darui
School of Data Science, Guangzhou Huashang College
Abstract: A prediction framework for the spatial structure of protein folding based on cloud computing is proposed and implemented. The original data of protein sequence is obtained through the data cloud storage unit and stored in the cloud using the HDFS distributed storage mode. After the resource and queue manager RQM (Requirements Quality Management) starts the cloud virtual machine, it is used as the Sensor Node which establishes the minimum protein molecular energy optimization function based on two-dimensional AB non-lattice model. The quantum genetic algorithm is adopted for local search mechanism to optimize its solution. The cloud GPU equipment is used to process the model training data to complete the automatic prediction of the spatial structure of protein folding. The experimental results show that the proposed approach can achieve the smaller calculation result of protein sequence energy potential function, the higher execution efficiency, and the higher GDT-TS (Geothermal Development and Testing Tool Suite) evaluation index value.
Key words : cloud computing;protein folding;spatial structure prediction;HDFS distributed storage;local search mechanism;quantum genetic algorithm

引言

蛋白質(zhì)定義為由共價鍵實現(xiàn)若干種氨基酸相連的多肽鏈,是生命活動不可缺少的重要物質(zhì)[1-2],因其高度參與,方使生命體具有活性[3]。分析蛋白質(zhì)結構與功能對揭秘生物生命奧秘具有極其顯著的研究意義[4-6]。

蛋白質(zhì)分子具有較高的復雜度,直接通過能量函數(shù)確定蛋白質(zhì)分子能量與結構的關系描述難以實現(xiàn)[7],因此,各種優(yōu)化算法應運而生。謝騰宇等人[8]為了準確確定蛋白質(zhì)折疊空間結構,設計了兩步構象空間搜索框架,該方法雖具有較好的局部搜索性能,但數(shù)據(jù)處理量很高,難以取得突出的數(shù)據(jù)處理效率。包晨等人[9]構建的多尺度卷積和循環(huán)神經(jīng)網(wǎng)絡預測模型能夠充分捕獲氨基酸序列局部以及長程特征信息,將其作為多層雙向長短期記憶網(wǎng)絡的輸入,實現(xiàn)蛋白質(zhì)折疊空間結構的確定。徐勝超[10]提出基于云計算的蛋白質(zhì)折疊模擬計算,研究了PERM算法的運行流程和面向MapReduce的子任務劃分方式。上述方法在蛋白質(zhì)折疊空間結構預測上是可行的,但受優(yōu)化算法以及網(wǎng)絡訓練參數(shù)量的影響,使得蛋白質(zhì)折疊空間結構預測計算量較高,面對龐大規(guī)模的數(shù)據(jù)處理量,如何提高算法執(zhí)行效率成為當下急需解決的問題。

云計算技術采用虛擬化技術,能高效地聚集多個物理節(jié)點并行化方式實現(xiàn)大規(guī)模數(shù)據(jù)的高效處理,在高性能科學計算領域得到了廣泛的認可[11-12]。因此,本文提出基于云計算的蛋白質(zhì)折疊空間結構預測方法,本文云計算平臺的軟件在版本上比文獻[10]已經(jīng)提高了很多,在精準獲取蛋白質(zhì)構象的同時提高算法的運行效率。


本文詳細內(nèi)容請下載:

http://theprogrammingfactory.com/resource/share/2000006114


作者信息:

徐勝超,楊波,王宏杰,毛明揚,蔣金陵,蔣大銳

(廣州華商學院 數(shù)據(jù)科學學院,廣東 廣州 511300)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。