一種改進(jìn)的基于Mask R-CNN的玉米大斑病實(shí)例分割算法
所屬分類:技術(shù)論文
上傳者:wwei
文檔大?。?span>6900 K
標(biāo)簽: 實(shí)例分割 玉米大斑病 Mask R-CNN
所需積分:0分積分不夠怎么辦?
文檔介紹:玉米作為我國主糧作物,其生產(chǎn)常受大斑病、小斑病、銹病等病害及蟲害影響,導(dǎo)致其產(chǎn)量與品質(zhì)下降,威脅農(nóng)業(yè)生產(chǎn)安全。近年來,視覺檢測技術(shù)因其高準(zhǔn)確性已成為病害防控的重要工具。以Mask R-CNN為基礎(chǔ)框架,通過融入DyHead、Groie和OHEM模塊進(jìn)行優(yōu)化,旨在提升對細(xì)微病灶圖像的分割效能。改良后的模型在病害圖像分割任務(wù)上展現(xiàn)出卓越性能,平均精度(mAP)提升4%,尤其在小目標(biāo)分割上準(zhǔn)確率提高8.5%,相較于YOLOv5、YOLACT++等同類模型優(yōu)勢顯著。通過消融實(shí)驗(yàn)驗(yàn)證了各新增模塊的有效性,證實(shí)該模型為精準(zhǔn)檢測玉米大斑病提供了有力的技術(shù)支持與理論依據(jù)。
現(xiàn)在下載
VIP會員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。