基于HybridDL模型的文本相似度檢測方法 | |
所屬分類:技術(shù)論文 | |
上傳者:aetmagazine | |
文檔大小:440 K | |
標(biāo)簽: Doc2Vec 潛在狄利克雷分布 文本表示 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:為了提高文本相似度檢測算法的準(zhǔn)確度,提出一種結(jié)合潛在狄利克雷分布(Latent Dirichlet Allocation,LDA)與Doc2Vec模型的文本相似度檢測方法,并把該算法得到的模型命名為HybridDL模型。該算法通過Doc2Vec對文檔訓(xùn)練得到文檔向量,再利用LDA模型得到文檔主題與各個(gè)主題下特征詞出現(xiàn)的概率,對文檔中各主題及特征詞計(jì)算概率加權(quán)和,映射到Doc2Vec文檔向量中。實(shí)驗(yàn)結(jié)果表明,新算法模型比傳統(tǒng)的Doc2Vec模型對相似文本的判斷更加敏感,在文本相似度檢測上具有更高的準(zhǔn)確度。 | |
現(xiàn)在下載 | |
VIP會員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號-2