日前,IBM蘇黎世研究中心宣布,制造出世界首個(gè)人造納米級(jí)隨機(jī)相變神經(jīng)元芯片,可實(shí)現(xiàn)人工智能的高速無監(jiān)督學(xué)習(xí)。外媒對(duì)此高度重視并評(píng)論道:“這一突破標(biāo)志著人類在認(rèn)知計(jì)算應(yīng)用中超密度集成神經(jīng)形態(tài)技術(shù),以及高效節(jié)能技術(shù)上的發(fā)展又向前邁進(jìn)重要的一步。”
人工智能的火熱,被今年3月份AlphaGo與李世石的圍棋大戰(zhàn)推向高潮,本次IBM人工智能芯片的“生物神經(jīng)元”、“人腦工作方式”等“高大上”屬性更是引起了業(yè)界的廣泛關(guān)注。關(guān)于類腦計(jì)算誰將主導(dǎo)未來趨勢(shì)呢?
神經(jīng)元芯片不屬于生物神經(jīng)網(wǎng)絡(luò)范疇
英特爾中國研究院前院長(zhǎng)、馭勢(shì)科技CEO吳甘沙告訴記者,關(guān)于類腦計(jì)算,現(xiàn)在也沒有一個(gè)廣為接受的定義,但現(xiàn)在基本可以看到兩個(gè) 方向,人工神經(jīng)網(wǎng)絡(luò)從功能層面模仿大腦的能力,而神經(jīng)擬態(tài)計(jì)算(neuromorphic computing)則是從結(jié)構(gòu)層面去逼近大腦,其結(jié)構(gòu)也有兩個(gè)層次,一是神經(jīng)網(wǎng)絡(luò)層面,與之相應(yīng)的是神經(jīng)擬態(tài)架構(gòu)和處理器,二是神經(jīng)元層面,與之相應(yīng)的 是元器件。
大家還可以看到其他的一些名詞,比如腦啟發(fā)計(jì)算(brain inspired computing),基本都是在上述層次里游移。IBM剛剛宣布的人工神經(jīng)元即是在神經(jīng)擬態(tài)計(jì)算方向,在神經(jīng)元結(jié)構(gòu)層面做出的努力。
“我們稱IBM關(guān)注的這類模型為‘脈沖神經(jīng)網(wǎng)絡(luò)’?!北本┲锌坪浼o(jì)科技有限公司創(chuàng)始人兼CEO陳天石在接受記者采訪時(shí)指 出,“IBM在人造神經(jīng)元方面的工作,是以新器件的方式直接模仿脈沖神經(jīng)元的行為,與其前期推出的TrueNorth是一脈相承的。我們不認(rèn)為它是生物神 經(jīng)網(wǎng)絡(luò),而只是理論神經(jīng)科學(xué)家的一種數(shù)學(xué)模型。但生物的神經(jīng)網(wǎng)絡(luò)究竟是什么樣,神經(jīng)科學(xué)家都還是一知半解,IBM現(xiàn)在就開始模仿,可能為時(shí)過早?!?/p>
寒武紀(jì)科技的兩個(gè)創(chuàng)始人均是中國科學(xué)院腦科學(xué)與智能技術(shù)卓越創(chuàng)新中心的成員,該中心是由世界頂尖神經(jīng)科學(xué)家,美國科學(xué)院院士、中國科學(xué)院外籍院士蒲慕明教授組建的,挑選了中國科學(xué)院最優(yōu)秀的腦科學(xué)和智能技術(shù)專家組建,一直密切關(guān)注著神經(jīng)科學(xué)的前沿動(dòng)態(tài)。
“從新聞報(bào)道的內(nèi)容來看,IBM推出的人造神經(jīng)元是屬于脈沖型神經(jīng)網(wǎng)絡(luò)的一款芯片。”作為成功量產(chǎn)中國首款嵌入式神經(jīng)網(wǎng)絡(luò)處理器芯片的企業(yè),中星微電子集團(tuán)首席技術(shù)官張韻東的看法與陳天石相同。
作為人工神經(jīng)網(wǎng)絡(luò)的一種,卷積神經(jīng)網(wǎng)絡(luò)CNN 是當(dāng)前人工智能機(jī)器視覺領(lǐng)域的研究熱點(diǎn)。
張韻東進(jìn)一步指出,IBM人工神經(jīng)元與卷積神經(jīng)網(wǎng)絡(luò)處理器芯片(如中星微的“星光智能一號(hào)”)相比,共同之處是,都是屬于受到生物人腦機(jī)理的啟 發(fā)而通過半導(dǎo)體電路與器件去實(shí)現(xiàn)的,都是采用CMOS半導(dǎo)體工藝來生產(chǎn)的。而不同之處在于,所采用的架構(gòu)和實(shí)現(xiàn)方式不同,前者采用脈沖型架構(gòu),用數(shù)模混合 電路來實(shí)現(xiàn);后者采用卷積型架構(gòu),用數(shù)據(jù)驅(qū)動(dòng)的并行數(shù)字電路來實(shí)現(xiàn)。
人工神經(jīng)網(wǎng)絡(luò)技術(shù)更被看好?
由此看來,不管是叫神經(jīng)擬態(tài)計(jì)算,還是叫脈沖神經(jīng)網(wǎng)絡(luò),IBM的這種技術(shù)路線是和人工神經(jīng)網(wǎng)絡(luò)并行的一種技術(shù)路線。那么,兩種路線孰優(yōu)孰劣?
張韻東更看好人工神經(jīng)網(wǎng)絡(luò)。他認(rèn)為,卷積神經(jīng)網(wǎng)絡(luò)與軟件開發(fā)環(huán)境的結(jié)合更加緊密,更加易于編程,易于商用化。
陳天石也認(rèn)為,目前為止,脈沖神經(jīng)網(wǎng)絡(luò)與人工神經(jīng)網(wǎng)絡(luò)相比,尚有很大差距。
他舉例道,脈沖神經(jīng)網(wǎng)絡(luò)無法做大尺度的圖像識(shí)別,即使是做簡(jiǎn)單的手寫數(shù)字識(shí)別,其識(shí)別精度也還沒有上世紀(jì)80年代流行的多層感知機(jī)(經(jīng)典的人工神經(jīng)網(wǎng)絡(luò))做得好。
我們知道,寒武紀(jì)科技和中星微電子都是國內(nèi)致力于人工神經(jīng)網(wǎng)絡(luò)技術(shù)路線的企業(yè),他們對(duì)IBM人造神經(jīng)元的看法是否會(huì)偏頗?
IEEE“神經(jīng)網(wǎng)絡(luò)先鋒獎(jiǎng)”獲得者、Facebook人工智能實(shí)驗(yàn)室負(fù)責(zé)人、人工智能深度學(xué)習(xí)權(quán)威Yann LeCun此前的評(píng)論我們可以參考。
對(duì)TrueNorth以及IBM一直關(guān)注的脈沖神經(jīng)網(wǎng)絡(luò),Yann LeCun說:“這類網(wǎng)絡(luò)沒有在任何有意思的問題上表現(xiàn)出與當(dāng)前最好技術(shù)(指人工神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)技術(shù))接近的結(jié)果”。
回答得有點(diǎn)迂回,但表達(dá)的意思基本清楚。
脈沖神經(jīng)網(wǎng)絡(luò)芯片商業(yè)化還需要好幾年
條條大路通羅馬。不同技術(shù)路線的存在,也自有其生存的土壤。
人工神經(jīng)網(wǎng)絡(luò)是從算法向硬件發(fā)展的。吳甘沙告訴記者,傳統(tǒng)的算法在通用芯片(CPU和GPU)上效率不高,于是出現(xiàn)了特定的算法 加速器,來加速包括卷積神經(jīng)網(wǎng)絡(luò)、遞歸神經(jīng)網(wǎng)絡(luò)在內(nèi)的各種神經(jīng)網(wǎng)絡(luò)算法。比如Teradeep,它來源于Yann LeCun(上文提到的深度學(xué)習(xí)大神)的工作NeuFlow,已經(jīng)實(shí)現(xiàn)了商業(yè)化。
中國科學(xué)院計(jì)算技術(shù)研究所寒武紀(jì)系列芯片在知識(shí)產(chǎn)權(quán)布局上非常獨(dú)到,也開始了商業(yè)化的探索。谷歌的TPU(Tensor Processing Unit)也是一種專用的加速器芯片,跟其深度學(xué)習(xí)軟件Tensor Flow匹配。就中短期而言,這類芯片有很好的商業(yè)化前景。
對(duì)于神經(jīng)擬態(tài)芯片,常常見諸媒體的是架構(gòu)和處理器層面的進(jìn)展。吳甘沙提出,IBM的TrueNorth芯片和高通的Zeroth芯片,兩者都基 于脈沖神經(jīng)網(wǎng)絡(luò)。TrueNorth發(fā)源于DARPA的SyNAPSE,展示了在100mW功耗下模擬復(fù)雜的遞歸神經(jīng)網(wǎng)絡(luò)的能力,體現(xiàn)了這一架構(gòu)的獨(dú)特之 處(但也有人指出功耗優(yōu)勢(shì)來自較低的主頻)。Zeroth的商業(yè)試用并不成功,目前已轉(zhuǎn)向人工神經(jīng)網(wǎng)絡(luò)加速器。
英特爾也在做脈沖神經(jīng)網(wǎng)絡(luò)的芯片,估計(jì)商業(yè)化還需要好幾年。即便如此,各家公司還是投入重兵,因?yàn)樗淼男滦吞幚矸妒健?jì)算與記憶的一體 化、復(fù)雜互聯(lián)、遞歸、時(shí)空編碼、異步、低精度、隨機(jī)性、高容錯(cuò)等特征,有很高的研究?jī)r(jià)值。例如,生物神經(jīng)元有很多突觸連接,這在硅芯片上很難實(shí)現(xiàn)。另外, 傳統(tǒng)的CPU和GPU都是同步的,實(shí)現(xiàn)神經(jīng)擬態(tài)需要異步電路。
“所以說,另一種思路是在器件方面得到突破,比如DARPA UPSIDE基于模擬芯片,有些類腦芯片基于憶阻器(memristor),以及IBM剛剛宣布的人工神經(jīng)元,所有這些都比傳統(tǒng)的晶體管更容易實(shí)現(xiàn)類腦計(jì)算?!眳歉噬硰?qiáng)調(diào)。
“IBM的神經(jīng)元新器件對(duì)脈沖神經(jīng)網(wǎng)絡(luò)的硬件實(shí)現(xiàn)有很大幫助,但這類模型在算法方面尚有很長(zhǎng)的路要走。”陳天石表示,“未來也許會(huì)有突破,但近年不樂觀?!?/p>
實(shí)際上,對(duì)于人工神經(jīng)元芯片的問世,IBM自身也是非常清醒的。他們?cè)谥赋觥斑@些相變神經(jīng)元是我們到目前為止所創(chuàng)造出的行為最接近生物神經(jīng)元的人工器件”的同時(shí),也強(qiáng)調(diào)將面臨“更難的部分——編寫一些能夠真正利用該芯片的神經(jīng)形態(tài)的軟件”。
但正如IBM所說:“我們沒有任何理由止步于此?!?/p>