基于深度學習的口罩佩戴檢測與跟蹤 | |
所屬分類:技術論文 | |
上傳者:aetmagazine | |
文檔大?。?span>1347 K | |
標簽: 目標檢測 目標跟蹤 口罩佩戴檢測 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:佩戴口罩可以有效預防病毒的傳播,為減少通過人工方式檢查口罩佩戴情況所消耗的大量人力資源,提出一種基于深度學習的口罩佩戴檢測與跟蹤方法,該方法分為檢測和跟蹤兩個模塊。檢測模塊在YOLOv3網絡的基礎上引入空間金字塔池化結構,實現(xiàn)不同尺度的特征融合;然后將損失函數(shù)改為CIoU損失,減少回歸誤差,提升檢測精度,為后續(xù)跟蹤模塊提供良好的條件。跟蹤模塊采用多目標跟蹤算法Deep SORT,對檢測到的目標進行實時跟蹤,有效防止重復檢測,改善被遮擋目標的跟蹤效果。測試結果表明,該方法的檢測速度為38 f/s,平均精度值達到為85.23%,相比原始YOLOv3算法提高了4%,能達到實時檢測口罩佩戴情況的效果。 | |
現(xiàn)在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統(tǒng)工程研究所版權所有 京ICP備10017138號-2